Follow
Vikash K. Mansinghka
Vikash K. Mansinghka
MIT, Probabilistic Computing Project
Verified email at mit.edu - Homepage
Title
Cited by
Cited by
Year
Church: a language for generative models
N Goodman, V Mansinghka, DM Roy, K Bonawitz, JB Tenenbaum
arXiv preprint arXiv:1206.3255, 2012
9182012
A new approach to probabilistic programming inference
F Wood, JW Meent, V Mansinghka
Artificial intelligence and statistics, 1024-1032, 2014
3622014
Picture: A probabilistic programming language for scene perception
TD Kulkarni, P Kohli, JB Tenenbaum, V Mansinghka
Proceedings of the ieee conference on computer vision and pattern …, 2015
2212015
Venture: a higher-order probabilistic programming platform with programmable inference
V Mansinghka, D Selsam, Y Perov
arXiv preprint arXiv:1404.0099, 2014
2122014
Reconciling intuitive physics and Newtonian mechanics for colliding objects.
AN Sanborn, VK Mansinghka, TL Griffiths
Psychological review 120 (2), 411, 2013
1912013
Gen: A general-purpose probabilistic programming system with programmable inference
MF Cusumano-Towner, FA Saad, A Lew, VK and Mansinghka
Technical Report MIT-CSAIL-TR-2018-020, Computer Science and Artificial …, 2019
1502019
Approximate bayesian image interpretation using generative probabilistic graphics programs
VK Mansinghka, TD Kulkarni, YN Perov, J Tenenbaum
Advances in Neural Information Processing Systems 26, 2013
1182013
Intuitive theories of mind: A rational approach to false belief
ND Goodman, CL Baker, EB Bonawitz, VK Mansinghka, A Gopnik, ...
Proceedings of the twenty-eighth annual conference of the cognitive science …, 2006
1142006
Structured priors for structure learning
V Mansinghka, C Kemp, T Griffiths, J Tenenbaum
arXiv preprint arXiv:1206.6852, 2012
992012
Natively probabilistic computation
VK Mansinghka
Massachusetts Institute of Technology, Department of Brain and Cognitive …, 2009
722009
Natively probabilistic computation
VK Mansinghka
Massachusetts Institute of Technology, Department of Brain and Cognitive …, 2009
722009
Learning annotated hierarchies from relational data
DM Roy, C Kemp, V Mansinghka, J Tenenbaum
Advances in neural information processing systems 19, 2006
722006
A probabilistic model of cross-categorization
P Shafto, C Kemp, V Mansinghka, JB Tenenbaum
Cognition 120 (1), 1-25, 2011
602011
Bayesian synthesis of probabilistic programs for automatic data modeling
FA Saad, MF Cusumano-Towner, U Schaechtle, MC Rinard, ...
Proceedings of the ACM on Programming Languages 3 (POPL), 1-32, 2019
482019
Online bayesian goal inference for boundedly rational planning agents
T Zhi-Xuan, J Mann, T Silver, J Tenenbaum, V Mansinghka
Advances in neural information processing systems 33, 19238-19250, 2020
432020
Probabilistic programming with programmable inference
VK Mansinghka, U Schaechtle, S Handa, A Radul, Y Chen, M and Rinard
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language …, 2018
422018
Learning cross-cutting systems of categories
P Shafto, C Kemp, V Mansinghka, M Gordon, JB Tenenbaum
Proceedings of the 28th annual conference of the Cognitive Science Society …, 2006
412006
Variational particle approximations
A Saeedi, TD Kulkarni, VK Mansinghka, SJ Gershman
The Journal of Machine Learning Research 18 (1), 2328-2356, 2017
382017
Variational particle approximations
A Saeedi, TD Kulkarni, VK Mansinghka, SJ Gershman
The Journal of Machine Learning Research 18 (1), 2328-2356, 2017
362017
Combinational stochastic logic
VK Mansinghka, EM Jonas
US Patent 8,352,384, 2013
352013
The system can't perform the operation now. Try again later.
Articles 1–20