Sledovat
Ellen Vitercik
Ellen Vitercik
E-mailová adresa ověřena na: stanford.edu - Domovská stránka
Název
Citace
Citace
Rok
Learning to branch
MF Balcan, T Dick, T Sandholm, E Vitercik
International conference on machine learning, 344-353, 2018
1682018
Sample Complexity of Automated Mechanism Design
MF Balcan, T Sandholm, E Vitercik
Advances In Neural Information Processing Systems, 2083-2091, 2016
642016
A General Theory of Sample Complexity for Multi-Item Profit Maximization
MF Balcan, T Sandholm, E Vitercik
Proceedings of the 2018 ACM Conference on Economics and Computation, 173-174, 2018
63*2018
Synchronization Strings: Channel Simulations and Interactive Coding for Insertions and Deletions
B Haeupler, A Shahrasbi, E Vitercik
arXiv preprint arXiv:1707.04233, 2017
622017
Dispersion for data-driven algorithm design, online learning, and private optimization
MF Balcan, T Dick, E Vitercik
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS …, 2018
532018
Learning-Theoretic Foundations of Algorithm Configuration for Combinatorial Partitioning Problems
MF Balcan, V Nagarajan, E Vitercik, C White
Conference on Learning Theory, 213-274, 2017
482017
How much data is sufficient to learn high-performing algorithms? generalization guarantees for data-driven algorithm design
MF Balcan, D DeBlasio, T Dick, C Kingsford, T Sandholm, E Vitercik
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing …, 2021
382021
Estimating Approximate Incentive Compatibility
E Vitercik, MF Balcan, T Sandholm
ACM Conference on Economics and Computation, 2019
21*2019
Learning combinatorial functions from pairwise comparisons
MF Balcan, E Vitercik, C White
Conference on Learning Theory, 310-335, 2016
182016
Learning to prune: Speeding up repeated computations
D Alabi, AT Kalai, K Liggett, C Musco, C Tzamos, E Vitercik
Conference on Learning Theory, 30-33, 2019
152019
Sample complexity of tree search configuration: Cutting planes and beyond
MFF Balcan, S Prasad, T Sandholm, E Vitercik
Advances in Neural Information Processing Systems 34, 4015-4027, 2021
142021
Refined bounds for algorithm configuration: The knife-edge of dual class approximability
MF Balcan, T Sandholm, E Vitercik
International Conference on Machine Learning, 580-590, 2020
112020
Learning to optimize computational resources: Frugal training with generalization guarantees
MF Balcan, T Sandholm, E Vitercik
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 3227-3234, 2020
82020
Generalization in portfolio-based algorithm selection
MF Balcan, T Sandholm, E Vitercik
Proceedings of the AAAI Conference on Artificial Intelligence 35 (14), 12225 …, 2021
62021
Improved Sample Complexity Bounds for Branch-And-Cut
MF Balcan, S Prasad, T Sandholm, E Vitercik
28th International Conference on Principles and Practice of Constraint …, 2022
5*2022
No-Regret Learning in Partially-Informed Auctions
W Guo, M Jordan, E Vitercik
International Conference on Machine Learning, 8039-8055, 2022
42022
Algorithmic greenlining: An approach to increase diversity
C Borgs, J Chayes, N Haghtalab, AT Kalai, E Vitercik
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 69-76, 2019
42019
Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts
MFF Balcan, S Prasad, T Sandholm, E Vitercik
Advances in Neural Information Processing Systems 35, 33890-33903, 2022
32022
Private optimization without constraint violations
A Muñoz Medina, U Syed, S Vassilvtiskii, E Vitercik
International Conference on Artificial Intelligence and Statistics, 2557-2565, 2021
22021
Revenue maximization via machine learning with noisy data
E Vitercik, T Yan
Advances in Neural Information Processing Systems 34, 10510-10523, 2021
12021
Systém momentálně nemůže danou operaci provést. Zkuste to znovu později.
Články 1–20