Modeling graphs with vertex replacement grammars S Sikdar, J Hibshman, T Weninger 2019 IEEE International Conference on Data Mining (ICDM), 558-567, 2019 | 13 | 2019 |
Towards interpretable graph modeling with vertex replacement grammars J Hibshman, S Sikdar, T Weninger 2019 IEEE International Conference on Big Data (Big Data), 770-779, 2019 | 12 | 2019 |
Joint subgraph-to-subgraph transitions: Generalizing triadic closure for powerful and interpretable graph modeling JI Hibshman, D Gonzalez, S Sikdar, T Weninger Proceedings of the 14th ACM International Conference on Web Search and Data …, 2021 | 9 | 2021 |
Ratio of symmetries between any two n-node graphs JI Hibshman arXiv preprint arXiv:2205.05726, 2022 | 2 | 2022 |
Higher Order Imprecise Probabilities and Statistical Testing J Hibshman, T Weninger arXiv preprint arXiv:2107.04542, 2021 | 1 | 2021 |
SCHENO: Measuring Schema vs. Noise in Graphs J Isaiah Hibshman, A Hoq, T Weninger arXiv e-prints, arXiv: 2404.13489, 2024 | | 2024 |
Inherent Limits on Topology-Based Link Prediction JI Hibshman, T Weninger Transactions on Machine Learning Research, 2023 | | 2023 |
Dynamic Vertex Replacement Grammars DG Cedre, JI Hibshman, T La Fond, G Boquet, T Weninger arXiv preprint arXiv:2303.11553, 2023 | | 2023 |
Principled Graph Structure Extraction JI Hibshman University of Notre Dame, 2023 | | 2023 |