Jianye Hao
Jianye Hao
Tianjin University
No verified email - Homepage
Cited by
Cited by
A learning-based framework for miRNA-disease association identification using neural networks
J Peng, W Hui, Q Li, B Chen, J Hao, Q Jiang, X Shang, Z Wei
Bioinformatics 35 (21), 4364-4371, 2019
Multi-agent game abstraction via graph attention neural network
Y Liu, W Wang, Y Hu, J Hao, X Chen, Y Gao
Proceedings of the AAAI Conference on Artificial Intelligence 34 (05), 7211-7218, 2020
Qatten: A general framework for cooperative multiagent reinforcement learning
Y Yang, J Hao, B Liao, K Shao, G Chen, W Liu, H Tang
arXiv preprint arXiv:2002.03939, 2020
Wuji: Automatic online combat game testing using evolutionary deep reinforcement learning
Y Zheng, X Xie, T Su, L Ma, J Hao, Z Meng, Y Liu, R Shen, Y Chen, C Fan
2019 34th IEEE/ACM International Conference on Automated Software …, 2019
Causalvae: Disentangled representation learning via neural structural causal models
M Yang, F Liu, Z Chen, X Shen, J Hao, J Wang
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
Smarts: Scalable multi-agent reinforcement learning training school for autonomous driving
M Zhou, J Luo, J Villella, Y Yang, D Rusu, J Miao, W Zhang, M Alban, ...
arXiv preprint arXiv:2010.09776, 2020
Integrating multi-network topology for gene function prediction using deep neural networks
J Peng, H Xue, Z Wei, I Tuncali, J Hao, X Shang
Briefings in bioinformatics 22 (2), 2096-2105, 2021
From few to more: Large-scale dynamic multiagent curriculum learning
W Wang, T Yang, Y Liu, J Hao, X Hao, Y Hu, Y Chen, C Fan, Y Gao
Proceedings of the AAAI Conference on Artificial Intelligence 34 (05), 7293-7300, 2020
A deep bayesian policy reuse approach against non-stationary agents
Y Zheng, Z Meng, J Hao, Z Zhang, T Yang, C Fan
Advances in neural information processing systems 31, 2018
Falsification of cyber-physical systems using deep reinforcement learning
T Akazaki, S Liu, Y Yamagata, Y Duan, J Hao
Formal Methods: 22nd International Symposium, FM 2018, Held as Part of the …, 2018
An end-to-end heterogeneous graph representation learning-based framework for drug–target interaction prediction
J Peng, Y Wang, J Guan, J Li, R Han, J Hao, Z Wei, X Shang
Briefings in bioinformatics 22 (5), bbaa430, 2021
Attention-based recurrent neural network for influenza epidemic prediction
X Zhu, B Fu, Y Yang, Y Ma, J Hao, S Chen, S Liu, T Li, S Liu, W Guo, ...
BMC bioinformatics 20 (18), 1-10, 2019
Hierarchical deep multiagent reinforcement learning with temporal abstraction
H Tang, J Hao, T Lv, Y Chen, Z Zhang, H Jia, C Ren, Y Zheng, Z Meng, ...
arXiv preprint arXiv:1809.09332, 2018
ABiNeS: An adaptive bilateral negotiating strategy over multiple items
J Hao, HF Leung
2012 IEEE/WIC/ACM International Conferences on Web Intelligence and …, 2012
Learning to utilize shaping rewards: A new approach of reward shaping
Y Hu, W Wang, H Jia, Y Wang, Y Chen, J Hao, F Wu, C Fan
Advances in Neural Information Processing Systems 33, 15931-15941, 2020
SC2disease: a manually curated database of single-cell transcriptome for human diseases
T Zhao, S Lyu, G Lu, L Juan, X Zeng, Z Wei, J Hao, J Peng
Nucleic Acids Research 49 (D1), D1413-D1419, 2021
Spectral-based graph convolutional network for directed graphs
Y Ma, J Hao, Y Yang, H Li, J Jin, G Chen
arXiv preprint arXiv:1907.08990, 2019
An adaptive Markov strategy for defending smart grid false data injection from malicious attackers
J Hao, E Kang, J Sun, Z Wang, Z Meng, X Li, Z Ming
IEEE Transactions on Smart Grid 9 (4), 2398-2408, 2016
Neighborhood cognition consistent multi-agent reinforcement learning
H Mao, W Liu, J Hao, J Luo, D Li, Z Zhang, J Wang, Z Xiao
Proceedings of the AAAI conference on artificial intelligence 34 (05), 7219-7226, 2020
Weighted double deep multiagent reinforcement learning in stochastic cooperative environments
Y Zheng, Z Meng, J Hao, Z Zhang
PRICAI 2018: Trends in Artificial Intelligence: 15th Pacific Rim …, 2018
The system can't perform the operation now. Try again later.
Articles 1–20