Oleg Borodin
Oleg Borodin
Battery Science Branch,US Army Research Laboratory (US ARL), DEVCOM, US Army
Verified email at - Homepage
Cited by
Cited by
“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
L Suo, O Borodin, T Gao, M Olguin, J Ho, X Fan, C Luo, C Wang, K Xu
Science 350 (6263), 938-943, 2015
High rate and stable cycling of lithium metal anode
J Qian, W Henderson, W Xu, P Bhattacharya, M Engelhard, O Borodin, ...
Nature Communications 6, 6362, 2015
Highly reversible zinc metal anode for aqueous batteries
F Wang, O Borodin, T Gao, X Fan, W Sun, F Han, A Faraone, JA Dura, ...
Nature materials 17 (6), 543-549, 2018
Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
X Fan, L Chen, O Borodin, X Ji, J Chen, S Hou, T Deng, J Zheng, C Yang, ...
Nature nanotechnology 13 (8), 715-722, 2018
Polarizable force field development and molecular dynamics simulations of ionic liquids
O Borodin
The Journal of Physical Chemistry B 113 (33), 11463-11478, 2009
Advanced high‐voltage aqueous lithium‐ion battery enabled by “water‐in‐bisalt” electrolyte
L Suo, O Borodin, W Sun, X Fan, C Yang, F Wang, T Gao, Z Ma, ...
Angewandte Chemie 128 (25), 7252-7257, 2016
Realizing high zinc reversibility in rechargeable batteries
L Ma, MA Schroeder, O Borodin, TP Pollard, MS Ding, C Wang, K Xu
Nature Energy 5 (10), 743-749, 2020
Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
J Chen, X Fan, Q Li, H Yang, MR Khoshi, Y Xu, S Hwang, L Chen, X Ji, ...
Nature Energy 5 (5), 386-397, 2020
Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite
C Yang, J Chen, X Ji, TP Pollard, X Lü, CJ Sun, S Hou, Q Liu, C Liu, ...
Nature 569 (7755), 245-250, 2019
Fluorinated interphase enables reversible aqueous zinc battery chemistries
L Cao, D Li, T Pollard, T Deng, B Zhang, C Yang, L Chen, J Vatamanu, ...
Nature nanotechnology 16 (8), 902-910, 2021
“Water‐in‐salt” electrolyte makes aqueous sodium‐ion battery safe, green, and long‐lasting
L Suo, O Borodin, Y Wang, X Rong, W Sun, X Fan, S Xu, MA Schroeder, ...
Advanced Energy Materials 7 (21), 1701189, 2017
Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations
O Borodin, GD Smith
Macromolecules 39 (4), 1620-1629, 2006
4.0 V aqueous Li-ion batteries
C Yang, J Chen, T Qing, X Fan, W Sun, A von Cresce, MS Ding, ...
Joule 1 (1), 122-132, 2017
Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields
D Bedrov, JP Piquemal, O Borodin, AD MacKerell Jr, B Roux, ...
Chemical reviews 119 (13), 7940-7995, 2019
How solid-electrolyte interphase forms in aqueous electrolytes
L Suo, D Oh, Y Lin, Z Zhuo, O Borodin, T Gao, F Wang, A Kushima, ...
Journal of the American Chemical Society 139 (51), 18670-18680, 2017
Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms
DW McOwen, DM Seo, O Borodin, J Vatamanu, PD Boyle, WA Henderson
Energy & Environmental Science 7 (1), 416-426, 2014
Identifying the components of the solid–electrolyte interphase in Li-ion batteries
L Wang, A Menakath, F Han, Y Wang, PY Zavalij, KJ Gaskell, O Borodin, ...
Nature chemistry 11 (9), 789-796, 2019
Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes
J Vatamanu, O Borodin, GD Smith
Journal of the American Chemical Society 132 (42), 14825-14833, 2010
Electrolytes for Lithium and Lithium-Ion Batteries
ME Jow, T.R., Xu, K., Borodin, O., Ue
Springer 58, 476, 2014
Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement
F Wu, JT Lee, N Nitta, H Kim, O Borodin, G Yushin
Advanced Materials 27 (1), 101–108, 2015
The system can't perform the operation now. Try again later.
Articles 1–20