Efficient processing of deep neural networks: A tutorial and survey V Sze, YH Chen, TJ Yang, JS Emer Proceedings of the IEEE 105 (12), 2295-2329, 2017 | 4224 | 2017 |
Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks YH Chen, T Krishna, J Emer, V Sze IEEE Journal of Solid-State Circuits (JSSC) 52 (1), 127-138, 2016 | 3843 | 2016 |
Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks YH Chen, J Emer, V Sze The 43rd International Symposium on Computer Architecture (ISCA), 2016 | 1914 | 2016 |
Single-chip microprocessor that communicates directly using light C Sun, MT Wade, Y Lee, JS Orcutt, L Alloatti, MS Georgas, AS Waterman, ... Nature 528 (7583), 534-538, 2015 | 1364 | 2015 |
Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices YH Chen, TJ Yang, J Emer, V Sze IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019 | 1158* | 2019 |
Designing energy-efficient convolutional neural networks using energy-aware pruning TJ Yang, YH Chen, V Sze Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 1005 | 2017 |
Hardware for Machine Learning: Challenges and Opportunities V Sze, YH Chen, JS Emer, A Suleiman, Z Zhang arXiv preprint arXiv:1612.07625, 2016 | 458 | 2016 |
Timeloop: A Systematic Approach to DNN Accelerator Evaluation A Parashar, P Raina, YS Shao, YH Chen, VA Ying, A Mukkara, ... International Symposium on Performance Analysis of Systems and Software (ISPASS), 2019 | 431 | 2019 |
Using dataflow to optimize energy efficiency of deep neural network accelerators YH Chen, J Emer, V Sze IEEE Micro 37 (3), 12-21, 2017 | 257 | 2017 |
A method to estimate the energy consumption of deep neural networks TJ Yang, YH Chen, J Emer, V Sze 2017 51st asilomar conference on signals, systems, and computers, 1916-1920, 2017 | 248 | 2017 |
Hardware architectures for deep neural networks J Emer, V Sze, YH Chen, TJ Yang CICS/MTL Tutorial, Mar 27, 258, 2017 | 136 | 2017 |
Heterogeneous dataflow accelerators for multi-DNN workloads H Kwon, L Lai, M Pellauer, T Krishna, YH Chen, V Chandra 2021 IEEE International Symposium on High-Performance Computer Architecture …, 2021 | 135 | 2021 |
Towards closing the energy gap between HOG and CNN features for embedded vision A Suleiman, YH Chen, J Emer, V Sze 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, 2017 | 118 | 2017 |
A monolithically-integrated chip-to-chip optical link in bulk CMOS C Sun, M Georgas, J Orcutt, B Moss, YH Chen, J Shainline, M Wade, ... IEEE Journal of Solid-State Circuits 50 (4), 828-844, 2015 | 118 | 2015 |
Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks YH Chen, TJ Yang, J Emer, V Sze SysML, 2018 | 99 | 2018 |
How to evaluate deep neural network processors: Tops/w (alone) considered harmful V Sze, YH Chen, TJ Yang, JS Emer IEEE Solid-State Circuits Magazine 12 (3), 28-41, 2020 | 77 | 2020 |
Demonstration of an optical chip-to-chip link in a 3D integrated electronic-photonic platform KT Settaluri, S Lin, S Moazeni, E Timurdogan, C Sun, M Moresco, Z Su, ... ESSCIRC Conference 2015-41st European Solid-State Circuits Conference …, 2015 | 61 | 2015 |
A 1.23 pJ/b 2.5 Gb/s monolithically integrated optical carrier-injection ring modulator and all-digital driver circuit in commercial 45nm SOI BR Moss, C Sun, M Georgas, J Shainline, JS Orcutt, JC Leu, M Wade, ... 2013 IEEE International Solid-State Circuits Conference Digest of Technical …, 2013 | 47 | 2013 |
Tutorial on hardware architectures for deep neural networks J Emer, V Sze, YH Chen IEEE/ACM International Symposium on Microarchitecture (MICRO-49), 2016 | 44 | 2016 |
A deeply pipelined CABAC decoder for HEVC supporting level 6.2 high-tier applications YH Chen, V Sze IEEE Transactions on Circuits and Systems for Video Technology 25 (5), 856-868, 2014 | 44 | 2014 |