Follow
Maximilian Soelch
Maximilian Soelch
Machine Learning Research Lab, Volkswagen AG
Verified email at argmax.ai - Homepage
Title
Cited by
Cited by
Year
Deep variational bayes filters: Unsupervised learning of state space models from raw data
M Karl, M Soelch, J Bayer, P Van der Smagt
arXiv preprint arXiv:1605.06432, 2016
4392016
Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series
M Soelch, J Bayer, M Ludersdorfer, P van der Smagt
arXiv preprint arXiv:1602.07109, 2016
1132016
Unsupervised real-time control through variational empowerment
M Karl, P Becker-Ehmck, M Soelch, D Benbouzid, P van der Smagt, ...
The International Symposium of Robotics Research, 158-173, 2019
582019
Latent matters: Learning deep state-space models
A Klushyn, R Kurle, M Soelch, B Cseke, P van der Smagt
Advances in Neural Information Processing Systems 34, 10234-10245, 2021
372021
Approximate bayesian inference in spatial environments
A Mirchev, B Kayalibay, M Soelch, P van der Smagt, J Bayer
arXiv preprint arXiv:1805.07206, 2018
252018
On deep set learning and the choice of aggregations
M Soelch, A Akhundov, P van der Smagt, J Bayer
Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical …, 2019
212019
Mind the gap when conditioning amortised inference in sequential latent-variable models
J Bayer, M Soelch, A Mirchev, B Kayalibay, P van der Smagt
arXiv preprint arXiv:2101.07046, 2021
182021
Variational tracking and prediction with generative disentangled state-space models
A Akhundov, M Soelch, J Bayer, P van der Smagt
arXiv preprint arXiv:1910.06205, 2019
62019
Detecting anomalies in robot time series data using stochastic recurrent networks
M Sölch
62015
Navigation and planning in latent maps
B Kayalibay, A Mirchev, M Soelch, P Van Der Smagt, J Bayer
FAIM workshop “Prediction and Generative Modeling in Reinforcement Learning 4, 2018
32018
Integrating competency-based education in interactive learning systems
M Sölch, M Aberle, S Krusche
arXiv preprint arXiv:2309.12343, 2023
22023
Is Online Teaching Dead After COVID-19? Student Preferences for Programming Courses
S Manger, M Sölch, M Linhuber, C Weinhuber, P Zagar, S Krusche
2023 IEEE 35th International Conference on Software Engineering Education …, 2023
2023
Uncovering dynamics
MJG Sölch
Technische Universität München, 2021
2021
The system can't perform the operation now. Try again later.
Articles 1–13