Follow
Jonathan Schmidt
Title
Cited by
Cited by
Year
Recent advances and applications of machine learning in solid-state materials science
J Schmidt, MRG Marques, S Botti, MAL Marques
npj Computational Materials 5 (1), 1-36, 2019
14692019
Predicting the thermodynamic stability of solids combining density functional theory and machine learning
J Schmidt, J Shi, P Borlido, L Chen, S Botti, MAL Marques
Chemistry of Materials 29 (12), 5090-5103, 2017
2752017
Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning
P Borlido, J Schmidt, AW Huran, F Tran, MAL Marques, S Botti
npj Computational Materials 6 (1), 96, 2020
1732020
Machine Learning the Physical Nonlocal Exchange–Correlation Functional of Density-Functional Theory
J Schmidt, CL Benavides-Riveros, MAL Marques
Journal of Physical Chemistry Letters, 2019
752019
Roadmap on Machine Learning in Electronic Structure
H Kulik, T Hammerschmidt, J Schmidt, S Botti, MAL Marques, M Boley, ...
Electronic Structure, 2022
682022
Crystal graph attention networks for the prediction of stable materials
J Schmidt, L Pettersson, C Verdozzi, S Botti, MAL Marques
Science Advances 7 (49), eabi7948, 2021
492021
Predicting the stability of ternary intermetallics with density functional theory and machine learning
J Schmidt, L Chen, S Botti, MAL Marques
The Journal of chemical physics 148 (24), 2018
382018
Reduced density matrix functional theory for superconductors
J Schmidt, CL Benavides-Riveros, MAL Marques
Physical Review B 99 (22), 224502, 2019
222019
High-throughput study of oxynitride, oxyfluoride and nitrofluoride perovskites
H Wang, J Schmidt, S Botti, MAL Marques
Journal of Materials Chemistry A, 2021
202021
Machine learning the derivative discontinuity of density-functional theory
J Gedeon, J Schmidt, MJP Hodgson, J Wetherell, CL Benavides-Riveros, ...
Machine Learning: Science and Technology 3 (1), 015011, 2021
182021
A dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals
J Schmidt, HC Wang, TFT Cerqueira, MAL Marques
Scientific Data 9 (64), 2022
132022
Superconductivity in antiperovskites
N Hoffmann, T Cerqueira, J Schmidt, M Marques
npj Computational Materials 8 (1), 2022
112022
Machine learning universal bosonic functionals
J Schmidt, M Fadel, CL Benavides-Riveros
Physical Review Research 3 (3), L032063, 2021
112021
Machine-learning-assisted determination of the global zero-temperature phase diagram of materials.
J Schmidt, N Hoffmann, HC Wang, P Borlido, PJMA Carrišo, ...
Advanced Materials, e2210788-e2210788, 2023
9*2023
Machine-learning correction to density-functional crystal structure optimization
R Hussein, J Schmidt, T Barros, MAL Marques, S Botti
MRS Bulletin 47 (8), 765-771, 2022
72022
Representability problem of density functional theory for superconductors
J Schmidt, CL Benavides-Riveros, MAL Marques
Physical Review B 99 (2), 024502, 2019
52019
Transfer learning on large datasets for the accurate prediction of material properties
N Hoffmann, J Schmidt, S Botti, MAL Marques
Digital Discovery, 2023
22023
Computational screening of materials with extreme gap deformation potentials
P Borlido, J Schmidt, HC Wang, S Botti, MAL Marques
npj Computational Materials 8 (1), 156, 2022
22022
Symmetry-based computational search for novel binary and ternary 2D materials
HC Wang, J Schmidt, MAL Marques, L Wirtz, AH Romero
2D Materials 10 (3), 035007, 2023
12023
Machine learning guided high-throughput search of non-oxide garnets
J Schmidt, HC Wang, G Schmidt, MAL Marques
npj Computational Materials 9 (1), 63, 2023
12023
The system can't perform the operation now. Try again later.
Articles 1–20