Progressive identification of true labels for partial-label learning J Lv, M Xu, L Feng, G Niu, X Geng, M Sugiyama international conference on machine learning, 6500-6510, 2020 | 180 | 2020 |
Provably consistent partial-label learning L Feng, J Lv, B Han, M Xu, G Niu, X Geng, B An, M Sugiyama Advances in neural information processing systems 33, 10948-10960, 2020 | 152 | 2020 |
Partial label learning via label enhancement N Xu, J Lv, X Geng Proceedings of the AAAI Conference on artificial intelligence 33 (01), 5557-5564, 2019 | 107 | 2019 |
Semi-supervised adaptive label distribution learning for facial age estimation P Hou, X Geng, ZW Huo, JQ Lv Proceedings of the AAAI Conference on Artificial Intelligence 31 (1), 2017 | 43 | 2017 |
One positive label is sufficient: Single-positive multi-label learning with label enhancement N Xu, C Qiao, J Lv, X Geng, ML Zhang Advances in Neural Information Processing Systems 35, 21765-21776, 2022 | 29 | 2022 |
On the robustness of average losses for partial-label learning J Lv, B Liu, L Feng, N Xu, M Xu, B An, G Niu, X Geng, M Sugiyama IEEE Transactions on Pattern Analysis and Machine Intelligence 46 (5), 2569-2583, 2023 | 27 | 2023 |
Weakly Supervised Multi-Label Learning via Label Enhancement. J Lv, N Xu, RY Zheng, X Geng IJCAI, 3101-3107, 2019 | 20 | 2019 |
Compact learning for multi-label classification J Lv, T Wu, C Peng, Y Liu, N Xu, X Geng Pattern Recognition 113, 107833, 2021 | 19 | 2021 |
Towards effective visual representations for partial-label learning S Xia, J Lv, N Xu, G Niu, X Geng Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 14 | 2023 |
Progressive purification for instance-dependent partial label learning N Xu, B Liu, J Lv, C Qiao, X Geng International Conference on Machine Learning, 38551-38565, 2023 | 13 | 2023 |
Multilabel ranking with inconsistent rankers X Geng, R Zheng, J Lv, Y Zhang IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (9), 5211-5224, 2021 | 12 | 2021 |
Ambiguity-Induced Contrastive Learning for Instance-Dependent Partial Label Learning. S Xia, J Lv, N Xu, X Geng IJCAI, 3615-3621, 2022 | 10 | 2022 |
Revisiting pseudo-label for single-positive multi-label learning B Liu, N Xu, J Lv, X Geng International Conference on Machine Learning, 22249-22265, 2023 | 8 | 2023 |
Effect of long-term fertilization on content and activity index of Cu and Cd in red soil J LIU, J LÜ, M XU, W ZHANG, M CHEN Ecology and Environment 18 (3), 914, 2009 | 8 | 2009 |
Learning with proper partial labels Z Wu, J Lv, M Sugiyama Neural Computation 35 (1), 58-81, 2023 | 7 | 2023 |
Fredis: A fusion framework of refinement and disambiguation for unreliable partial label learning C Qiao, N Xu, J Lv, Y Ren, X Geng International Conference on Machine Learning, 28321-28336, 2023 | 4 | 2023 |
Polyurethane nanofiber membranes immobilized with Bacillus altitudinis LS-1 for bioremediation of diesel-contaminated wastewater B Liu, X Ying, Y Zhang, J Lv, B Yang, X Li, H Chen, J Liu Process Safety and Environmental Protection 180, 883-892, 2023 | 2 | 2023 |
Design and Analysis of Planar Solar Concentrator in Ray-leakage-free Respect Y Peng, X Xi-ping, J Zhao-guo, L Jia-qi, G Shao-hua ACTA PHOTONICA SINICA 46 (9), 2017 | 1 | 2017 |
Learning with Partial-Label and Unlabeled Data: A Uniform Treatment for Supervision Redundancy and Insufficiency Y Liu, J Lv, X Geng, N Xu Forty-first International Conference on Machine Learning, 0 | | |