Harkirat Behl
Harkirat Behl
Microsoft AI
Verified email at - Homepage
Cited by
Cited by
Textbooks are all you need
S Gunasekar, Y Zhang, J Aneja, CCT Mendes, A Del Giorno, S Gopi, ...
arXiv preprint arXiv:2306.11644, 2023
Generalized Decoding for Pixel, Image, and Language
X Zou, ZY Dou, J Yang, Z Gan, L Li, C Li, X Dai, H Behl, J Wang, L Yuan, ...
CVPR 2023, 2023
Progressive skeletonization: Trimming more fat from a network at initialization
P de Jorge, A Sanyal, HS Behl, PHS Torr, G Rogez, PK Dokania
ICLR 2021, 2020
Alpha MAML: Adaptive Model-Agnostic Meta-Learning
HS Behl, AG Baydin, PHS Torr
ICML 2019 Workshops, 2019
STEER: Simple Temporal Regularization For Neural ODEs
A Ghosh, HS Behl, PHS Torr, V Namboodiri
NeurIPS 2020, 2020
Scaling the Convex Barrier with Active Sets
A De Palma, HS Behl, R Bunel, PHS Torr, MP Kumar
ICLR 2021, 2021
Phi-2: The surprising power of small language models
M Abdin, J Aneja, S Bubeck, CCT Mendes, W Chen, A Del Giorno, ...
Microsoft Research Blog, 2023
AutoSimulate: (Quickly) Learning Synthetic Data Generation
HS Behl, AG Baydin, R Gal, PHS Torr, V Vineet
ECCV 2020, 2020
Incremental Tube Construction for Human Action Detection
HS Behl, M Sapienza, G Singh, S Saha, F Cuzzolin, PHS Torr
BMVC 2018, 2018
Neural-Sim: Learning to Generate Training Data with NeRF
Y Ge, H Behl, J Xu, S Gunasekar, N Joshi, Y Song, X Wang, L Itti, V Vineet
ECCV 2022, 2022
Meta learning deep visual words for fast video object segmentation
HS Behl, M Najafi, A Arnab, PHS Torr
IROS 2020, 2018
Scaling the convex barrier with sparse dual algorithms
A De Palma, HS Behl, R Bunel, PHS Torr, MP Kumar
Journal of Machine Learning Research 25 (61), 1-51, 2024
Phi-3 technical report: A highly capable language model locally on your phone
M Abdin, SA Jacobs, AA Awan, J Aneja, A Awadallah, H Awadalla, ...
arXiv preprint arXiv:2404.14219, 2024
Overcoming the convex barrier for simplex inputs
H Singh, MP Kumar, P Torr, KD Dvijotham
NeurIPS 2021, 2021
PEEKABOO: Interactive Video Generation via Masked-Diffusion
Y Jain, A Nasery, V Vineet, H Behl
CVPR 2024, 2023
Efficiently Robustify Pre-trained Models
N Jain, H Behl, YS Rawat, V Vineet
ICCV 2023, 2023
Variational autoencoders: A brief survey
M Mittal, HS Behl
DAMEX: Dataset-aware Mixture-of-Experts for visual understanding of mixture-of-datasets
Y Jain, H Behl, Z Kira, V Vineet
Advances in Neural Information Processing Systems 36, 2024
Automated and verified deep learning
HS Behl
University of Oxford, 2021
The system can't perform the operation now. Try again later.
Articles 1–19