Metapath-guided heterogeneous graph neural network for intent recommendation S Fan, J Zhu, X Han, C Shi, L Hu, B Ma, Y Li Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019 | 304 | 2019 |
Harnessing the power of llms in practice: A survey on chatgpt and beyond J Yang, H Jin, R Tang, X Han, Q Feng, H Jiang, B Yin, X Hu arXiv preprint arXiv:2304.13712, 2023 | 110 | 2023 |
Deep collaborative filtering with multi-aspect information in heterogeneous networks C Shi, X Han, L Song, X Wang, S Wang, J Du, SY Philip IEEE transactions on knowledge and data engineering 33 (4), 1413-1425, 2019 | 107 | 2019 |
G-mixup: Graph data augmentation for graph classification X Han, Z Jiang, N Liu, X Hu International Conference on Machine Learning, 8230-8248, 2022 | 96 | 2022 |
Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks. X Han, C Shi, S Wang, SY Philip, L Song IJCAI 18, 3393-3399, 2018 | 93 | 2018 |
Flowscope: Spotting money laundering based on graphs X Li, S Liu, Z Li, X Han, C Shi, B Hooi, H Huang, X Cheng Proceedings of the AAAI conference on artificial intelligence 34 (04), 4731-4738, 2020 | 75 | 2020 |
Generalized demographic parity for group fairness Z Jiang, X Han, C Fan, F Yang, A Mostafavi, X Hu International Conference on Learning Representations, 2022 | 39 | 2022 |
Anomalous trajectory detection using recurrent neural network L Song, R Wang, D Xiao, X Han, Y Cai, C Shi Advanced Data Mining and Applications: 14th International Conference, ADMA …, 2018 | 36 | 2018 |
Does synthetic data generation of llms help clinical text mining? R Tang, X Han, X Jiang, X Hu arXiv preprint arXiv:2303.04360, 2023 | 35 | 2023 |
Fmp: Toward fair graph message passing against topology bias Z Jiang, X Han, C Fan, Z Liu, N Zou, A Mostafavi, X Hu arXiv preprint arXiv:2202.04187, 2022 | 30 | 2022 |
Autorec: An automated recommender system TH Wang, X Hu, H Jin, Q Song, X Han, Z Liu Proceedings of the 14th ACM Conference on Recommender Systems, 582-584, 2020 | 19* | 2020 |
Auto-PINN: understanding and optimizing physics-informed neural architecture Y Wang, X Han, CY Chang, D Zha, U Braga-Neto, X Hu arXiv preprint arXiv:2205.13748, 2022 | 16 | 2022 |
Geometric graph representation learning via maximizing rate reduction X Han, Z Jiang, N Liu, Q Song, J Li, X Hu Proceedings of the ACM Web Conference 2022, 1226-1237, 2022 | 14 | 2022 |
Mlpinit: Embarrassingly simple gnn training acceleration with mlp initialization X Han, T Zhao, Y Liu, X Hu, N Shah arXiv preprint arXiv:2210.00102, 2022 | 10 | 2022 |
Retiring : New Distribution-Level Metrics for Demographic Parity X Han, Z Jiang, H Jin, Z Liu, N Zou, Q Wang, X Hu Transactions on Machine Learning Research, 2023 | 8* | 2023 |
Representation learning with depth and breadth for recommendation using multi-view data X Han, C Shi, L Zheng, PS Yu, J Li, Y Lu Web and Big Data: Second International Joint Conference, APWeb-WAIM 2018 …, 2018 | 7 | 2018 |
Embedding geographic information for anomalous trajectory detection D Xiao, L Song, R Wang, X Han, Y Cai, C Shi World Wide Web 23, 2789-2809, 2020 | 6 | 2020 |
Weight perturbation can help fairness under distribution shift Z Jiang, X Han, H Jin, G Wang, N Zou, X Hu arXiv preprint arXiv:2303.03300, 2023 | 5 | 2023 |
Towards Assumption-free Bias Mitigation CY Chang, YN Chuang, KH Lai, X Han, X Hu, N Zou arXiv preprint arXiv:2307.04105, 2023 | 2 | 2023 |
Fair Graph Message Passing with Transparency Z Jiang, X Han, C Fan, Z Liu, N Zou, A Mostafavi, X Hu | 2 | 2022 |