Sledovat
Yihui Xiong
Název
Citace
Citace
Rok
Deep learning and its application in geochemical mapping
R Zuo, Y Xiong, J Wang, EJM Carranza
Earth-science reviews 192, 1-14, 2019
3052019
Recognition of geochemical anomalies using a deep autoencoder network
Y Xiong, R Zuo
Computers & Geosciences 86, 75-82, 2016
2502016
Mapping mineral prospectivity through big data analytics and a deep learning algorithm
Y Xiong, R Zuo, EJM Carranza
Ore Geology Reviews 102, 811-817, 2018
1662018
Big data analytics of identifying geochemical anomalies supported by machine learning methods
R Zuo, Y Xiong
Natural Resources Research 27, 5-13, 2018
1552018
Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
T Li, R Zuo, Y Xiong, Y Peng
Natural Resources Research 30, 27-38, 2021
1252021
A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
ZJ Zhang, RG Zuo, YH Xiong
Science China Earth Sciences 59, 556-572, 2016
1152016
GIS-based rare events logistic regression for mineral prospectivity mapping
Y Xiong, R Zuo
Computers & Geosciences 111, 18-25, 2018
1132018
The processing methods of geochemical exploration data: past, present, and future
R Zuo, J Wang, Y Xiong, Z Wang
Applied Geochemistry 132, 105072, 2021
1012021
Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
Y Xiong, R Zuo
Computers & geosciences 140, 104484, 2020
972020
Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
Y Gao, Z Zhang, Y Xiong, R Zuo
Ore Geology Reviews 75, 16-28, 2016
972016
Mapping mineral prospectivity via semi-supervised random forest
J Wang, R Zuo, Y Xiong
Natural Resources Research 29, 189-202, 2020
932020
Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions
R Zuo, OP Kreuzer, J Wang, Y Xiong, Z Zhang, Z Wang
Natural Resources Research 30, 3059-3079, 2021
872021
Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method
C Zhang, R Zuo, Y Xiong
Applied Geochemistry 130, 104994, 2021
812021
Recognition of geochemical anomalies using a deep variational autoencoder network
Z Luo, Y Xiong, R Zuo
Applied Geochemistry 122, 104710, 2020
782020
Robust feature extraction for geochemical anomaly recognition using a stacked convolutional denoising autoencoder
Y Xiong, R Zuo
Mathematical Geosciences, 1-22, 2021
772021
Geodata science and geochemical mapping
R Zuo, Y Xiong
Journal of Geochemical Exploration 209, 106431, 2020
652020
Detection of geochemical anomalies related to mineralization using the GANomaly network
Z Luo, R Zuo, Y Xiong, X Wang
Applied Geochemistry 131, 105043, 2021
572021
Effects of misclassification costs on mapping mineral prospectivity
Y Xiong, R Zuo
Ore Geology Reviews 82, 1-9, 2017
532017
A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition
L Chen, Q Guan, Y Xiong, J Liang, Y Wang, Y Xu
Computers & geosciences 125, 43-54, 2019
522019
A geologically constrained variational autoencoder for mineral prospectivity mapping
R Zuo, Z Luo, Y Xiong, B Yin
Natural Resources Research 31 (3), 1121-1133, 2022
502022
Systém momentálně nemůže danou operaci provést. Zkuste to znovu později.
Články 1–20