Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes S Hinterstoisser, V Lepetit, S Ilic, S Holzer, G Bradski, K Konolige, ... Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon …, 2013 | 1559 | 2013 |
Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, ... 2011 international conference on computer vision, 858-865, 2011 | 815 | 2011 |
Gradient response maps for real-time detection of textureless objects S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, V Lepetit IEEE transactions on pattern analysis and machine intelligence 34 (5), 876-888, 2011 | 780 | 2011 |
Dominant orientation templates for real-time detection of texture-less objects S Hinterstoisser, V Lepetit, S Ilic, P Fua, N Navab 2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010 | 332 | 2010 |
On pre-trained image features and synthetic images for deep learning S Hinterstoisser, V Lepetit, P Wohlhart, K Konolige Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018 | 313 | 2018 |
Detection and reconstruction of an environment to facilitate robotic interaction with the environment K Konolige, E Rublee, S Hinterstoisser, T Straszheim, G Bradski, ... US Patent 9,102,055, 2015 | 263 | 2015 |
Going further with point pair features S Hinterstoisser, V Lepetit, N Rajkumar, K Konolige Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016 | 225 | 2016 |
Object pickup strategies for a robotic device G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ... US Patent 9,987,746, 2018 | 181 | 2018 |
Multi-task domain adaptation for deep learning of instance grasping from simulation K Fang, Y Bai, S Hinterstoisser, S Savarese, M Kalakrishnan 2018 IEEE International Conference on Robotics and Automation (ICRA), 3516-3523, 2018 | 129 | 2018 |
An annotation saved is an annotation earned: Using fully synthetic training for object detection S Hinterstoisser, O Pauly, H Heibel, M Martina, M Bokeloh Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 104 | 2019 |
An industrial augmented reality solution for discrepancy check P Georgel, P Schroeder, S Benhimane, S Hinterstoisser, M Appel, ... 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality …, 2007 | 91 | 2007 |
Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds BK Seo, H Park, JI Park, S Hinterstoisser, S Ilic IEEE transactions on visualization and computer graphics 20 (1), 99-110, 2013 | 75 | 2013 |
Continuous updating of plan for robotic object manipulation based on received sensor data G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ... US Patent 9,238,304, 2016 | 66 | 2016 |
Rapid selection of reliable templates for visual tracking N Alt, S Hinterstoisser, N Navab 2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010 | 66 | 2010 |
Online learning of patch perspective rectification for efficient object detection S Hinterstoisser, S Benhimane, N Navab, P Fua, V Lepetit 2008 IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2008 | 65 | 2008 |
Learning real-time perspective patch rectification S Hinterstoisser, V Lepetit, S Benhimane, P Fua, N Navab International Journal of Computer Vision 91, 107-130, 2011 | 63 | 2011 |
N3m: Natural 3d markers for real-time object detection and pose estimation S Hinterstoisser, S Benhimane, N Navab 2007 IEEE 11th International Conference on Computer Vision, 1-7, 2007 | 59 | 2007 |
Distance transform templates for object detection and pose estimation S Holzer, S Hinterstoisser, S Ilic, N Navab 2009 IEEE Conference on Computer Vision and Pattern Recognition, 1177-1184, 2009 | 54 | 2009 |
Real-time learning of accurate patch rectification S Hinterstoisser, O Kutter, N Navab, P Fua, V Lepetit 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2945-2952, 2009 | 50 | 2009 |
Object segmentation based on detected object-specific visual cues S Hinterstoisser, K Konolige US Patent 9,327,406, 2016 | 49 | 2016 |