Sledovat
Jiequn Han
Jiequn Han
Flatiron Institute, Simons Foundation
E-mailová adresa ověřena na: flatironinstitute.org - Domovská stránka
Název
Citace
Citace
Rok
Solving high-dimensional partial differential equations using deep learning
J Han, A Jentzen, W E
Proceedings of the National Academy of Sciences 115 (34), 8505-8510, 2018
16112018
Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics
L Zhang, J Han, H Wang, R Car, W E
Physical review letters 120 (14), 143001, 2018
13462018
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
H Wang, L Zhang, J Han, W E
Computer Physics Communications 228, 178-184, 2018
8802018
Income and wealth distribution in macroeconomics: A continuous-time approach
Y Achdou, J Han, JM Lasry, PL Lions, B Moll
The review of economic studies 89 (1), 45-86, 2022
664*2022
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
W E, J Han, A Jentzen
Communications in Mathematics and Statistics 5 (4), 349-380, 2017
583*2017
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
L Zhang, J Han, H Wang, W Saidi, R Car, W E
Advances in Neural Information Processing Systems, 4436-4446, 2018
4112018
Deep potential: a general representation of a many-body potential energy surface
J Han, L Zhang, R Car, W E
Communications in Computational Physics 23 (3), 629-639, 2018
2272018
Deep learning approximation for stochastic control problems
J Han, W E
Advances in Neural Information Processing Systems, Deep Reinforcement …, 2016
207*2016
Solving many-electron Schrödinger equation using deep neural networks
J Han, L Zhang, W E
Journal of Computational Physics 399, 108929, 2019
1862019
DeePCG: Constructing coarse-grained models via deep neural networks
L Zhang, J Han, H Wang, R Car
The Journal of chemical physics 149 (3), 2018
1702018
Convergence of the deep BSDE method for coupled FBSDEs
J Han, J Long
Probability, Uncertainty and Quantitative Risk 5, 1-33, 2020
1472020
A mean-field optimal control formulation of deep learning
W E, J Han, Q Li
Research in the Mathematical Sciences 6 (1), 10, 2019
142*2019
Algorithms for Solving High Dimensional PDEs: From Nonlinear Monte Carlo to Machine Learning
W E, J Han, A Jentzen
Nonlinearity 35 278, 2021
133*2021
From microscopic theory to macroscopic theory: a systematic study on static modeling for liquid crystals
J Han, Y Luo, W Wang, P Zhang
Archive for Rational Mechanics and Analysis 215 (3), 741–809, 2013
84*2013
Uniformly accurate machine learning-based hydrodynamic models for kinetic equations
J Han, C Ma, Z Ma, W E
Proceedings of the National Academy of Sciences 116 (44), 21983-21991, 2019
792019
Solving high-dimensional eigenvalue problems using deep neural networks: A diffusion Monte Carlo like approach
J Han, J Lu, M Zhou
Journal of Computational Physics 423, 109792, 2020
782020
Machine-learning-assisted modeling
W E, J Han, L Zhang
Physics Today 74 (7), 36-41, 2021
45*2021
Deep fictitious play for finding Markovian Nash equilibrium in multi-agent games
J Han, R Hu
Mathematical and scientific machine learning, 221-245, 2020
452020
DeePMD-kit v2: A software package for Deep Potential models
J Zeng, D Zhang, D Lu, P Mo, Z Li, Y Chen, M Rynik, L Huang, Z Li, S Shi, ...
arXiv preprint arXiv:2304.09409, 2023
402023
Neural-network quantum states for periodic systems in continuous space
G Pescia, J Han, A Lovato, J Lu, G Carleo
Physical Review Research 4 (2), 023138, 2022
402022
Systém momentálně nemůže danou operaci provést. Zkuste to znovu později.
Články 1–20