Vít Průša
Cited by
Cited by
Derivation of equations for continuum mechanics and thermodynamics of fluids
J Málek, V Průša
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 3-72, 2018
Generalizations of the Navier-Stokes fluid from a new perspective
J Málek, V Průša, KR Rajagopal
International Journal of Engineering Science 48 (12), 1907-1924, 2010
On Maxwell fluid with relaxation time and viscosity depending on the pressure
S Karra, V Průša, KR Rajagopal
International Journal of Non-Linear Mechanics 46 (6), 819–827, 2011
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
J Málek, V Průša, T Skřivan, E Süli
Physics of Fluids 30 (2), 023101, 2018
Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids
T Perlácová, V Průša
Journal of Non-Newtonian Fluid Mechanics 216, 13–21, 2015
Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities
V Průša
International Journal of Engineering Science 48 (12), 2054-2065, 2010
On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients
J Hron, V Miloš, V Průša, O Souček, K Tůma
International Journal of Non-Linear Mechanics 95, 193–208, 2017
On implicit constitutive relations for materials with fading memory
V Průša, KR Rajagopal
Journal of Non-Newtonian Fluid Mechanics 181, 22–29, 2012
Role of pressure dependent viscosity in measurements with falling cylinder viscometer
V Průša, KR Rajagopal, S Srinivasan
International Journal of Non-Linear Mechanics 47 (7), 743–750, 2012
Thermodynamics and stability of non-equilibrium steady states in open systems
M Bulíček, J Málek, V Průša
Entropy 21 (7), 704, 2019
Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions
V Průša, KR Rajagopal
Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 62 (4), 707-740, 2011
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion
M Bulíček, J Málek, V Průša, E Süli
Mathematical analysis in fluid mechanics: Selected recent results 710, 25-52, 2018
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck–Boussinesq type approximations
V Průša, KR Rajagopal
Mathematical Models and Methods in Applied Sciences 23 (10), 1761-1794, 2013
On the response of physical systems governed by nonlinear ordinary differential equations to step input
V Průša, KR Rajagopal
International Journal of Non-Linear Mechanics 81, 207–221, 2016
Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
V Průša, KR Rajagopal, K Tůma
International Journal of Non-Linear Mechanics 121, 103433, 2020
Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the …
A Janečka, J Málek, V Průša, G Tierra
Acta Mechanica 230 (3), 729-747, 2019
Euler–Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range
A Janečka, V Průša, KR Rajagopal
Archives of Mechanics 68 (1), 3-25, 2016
Further remarks on simple flows of fluids with pressure-dependent viscosities
J Hron, J Málek, V Průša, KR Rajagopal
Nonlinear Analysis: Real World Applications 12 (1), 394-402, 2011
On diffusive variants of some classical viscoelastic rate-type models
M Dostalík, V Průša, T Skřivan
AIP Conference Proceedings 2107, 020002, 2019
Flow of an electrorheological fluid between eccentric rotating cylinders
V Průša, KR Rajagopal
Theoretical and Computational Fluid Dynamics 26 (1-4), 1-21, 2012
The system can't perform the operation now. Try again later.
Articles 1–20