Generative adversarial imitation learning J Ho, S Ermon Advances in Neural Information Processing Systems, 4565-4573, 2016 | 2528 | 2016 |
Denoising diffusion probabilistic models J Ho, A Jain, P Abbeel Advances in Neural Information Processing Systems 33, 6840-6851, 2020 | 2418 | 2020 |
Evolution strategies as a scalable alternative to reinforcement learning T Salimans, J Ho, X Chen, S Sidor, I Sutskever arXiv preprint arXiv:1703.03864, 2017 | 1414 | 2017 |
Photorealistic text-to-image diffusion models with deep language understanding C Saharia, W Chan, S Saxena, L Li, J Whang, EL Denton, K Ghasemipour, ... Advances in Neural Information Processing Systems 35, 36479-36494, 2022 | 962 | 2022 |
Motion planning with sequential convex optimization and convex collision checking J Schulman, Y Duan, J Ho, A Lee, I Awwal, H Bradlow, J Pan, S Patil, ... The International Journal of Robotics Research 33 (9), 1251-1270, 2014 | 686 | 2014 |
One-shot imitation learning Y Duan, M Andrychowicz, B Stadie, J Ho, J Schneider, I Sutskever, ... Advances in Neural Information Processing Systems, 1087-1098, 2017 | 663 | 2017 |
Finding locally optimal, collision-free trajectories with sequential convex optimization. J Schulman, J Ho, AX Lee, I Awwal, H Bradlow, P Abbeel Robotics: science and systems 9 (1), 1-10, 2013 | 523 | 2013 |
Classifier-free diffusion guidance J Ho, T Salimans arXiv preprint arXiv:2207.12598, 2022 | 478 | 2022 |
Image super-resolution via iterative refinement C Saharia, J Ho, W Chan, T Salimans, DJ Fleet, M Norouzi IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022 | 378 | 2022 |
Meta learning shared hierarchies K Frans, J Ho, X Chen, P Abbeel, J Schulman arXiv preprint arXiv:1710.09767, 2017 | 359 | 2017 |
Flow++: Improving flow-based generative models with variational dequantization and architecture design J Ho, X Chen, A Srinivas, Y Duan, P Abbeel International Conference on Machine Learning, 2019 | 352 | 2019 |
Axial attention in multidimensional transformers J Ho, N Kalchbrenner, D Weissenborn, T Salimans arXiv preprint arXiv:1912.12180, 2019 | 327 | 2019 |
Palette: Image-to-image diffusion models C Saharia, W Chan, H Chang, C Lee, J Ho, T Salimans, D Fleet, ... ACM SIGGRAPH 2022 Conference Proceedings, 1-10, 2022 | 311 | 2022 |
Cascaded Diffusion Models for High Fidelity Image Generation J Ho, C Saharia, W Chan, DJ Fleet, M Norouzi, T Salimans arXiv preprint arXiv:2106.15282, 2021 | 292 | 2021 |
Variational diffusion models D Kingma, T Salimans, B Poole, J Ho Advances in neural information processing systems 34, 21696-21707, 2021 | 287 | 2021 |
Video diffusion models J Ho, T Salimans, A Gritsenko, W Chan, M Norouzi, DJ Fleet arXiv preprint arXiv:2204.03458, 2022 | 243 | 2022 |
Evolved policy gradients R Houthooft, Y Chen, P Isola, B Stadie, F Wolski, J Ho, P Abbeel Advances in Neural Information Processing Systems, 5405-5414, 2018 | 227 | 2018 |
Structured denoising diffusion models in discrete state-spaces J Austin, DD Johnson, J Ho, D Tarlow, R van den Berg Advances in Neural Information Processing Systems 34, 17981-17993, 2021 | 189 | 2021 |
Tracking deformable objects with point clouds J Schulman, A Lee, J Ho, P Abbeel 2013 IEEE International Conference on Robotics and Automation, 1130-1137, 2013 | 187 | 2013 |
Progressive distillation for fast sampling of diffusion models T Salimans, J Ho arXiv preprint arXiv:2202.00512, 2022 | 170 | 2022 |