Sagedb: A learned database system T Kraska, M Alizadeh, A Beutel, EH Chi, J Ding, A Kristo, G Leclerc, ... | 164 | 2021 |
3db: A framework for debugging computer vision models G Leclerc, H Salman, A Ilyas, S Vemprala, L Engstrom, V Vineet, K Xiao, ... arXiv preprint arXiv:2106.03805, 2021 | 22 | 2021 |
The two regimes of deep network training G Leclerc, A Madry arXiv preprint arXiv:2002.10376, 2020 | 22 | 2020 |
Datamodels: Predicting predictions from training data A Ilyas, SM Park, L Engstrom, G Leclerc, A Madry arXiv preprint arXiv:2202.00622, 2022 | 20 | 2022 |
The seamless peer and cloud evolution framework G Leclerc, JE Auerbach, G Iacca, D Floreano Proceedings of the Genetic and Evolutionary Computation Conference 2016, 821-828, 2016 | 20 | 2016 |
Smallify: Learning network size while training G Leclerc, M Vartak, RC Fernandez, T Kraska, S Madden arXiv preprint arXiv:1806.03723, 2018 | 13 | 2018 |
Adversarially trained neural representations are already as robust as biological neural representations C Guo, M Lee, G Leclerc, J Dapello, Y Rao, A Madry, J Dicarlo International Conference on Machine Learning, 8072-8081, 2022 | 9 | 2022 |
Datamodels: Understanding predictions with data and data with predictions A Ilyas, SM Park, L Engstrom, G Leclerc, A Madry International Conference on Machine Learning, 9525-9587, 2022 | 4 | 2022 |
Model metamers illuminate divergences between biological and artificial neural networks J Feather, G Leclerc, A Mądry, JH McDermott bioRxiv, 2022.05. 19.492678, 2022 | 2 | 2022 |
FFCV: Accelerating Training by Removing Data Bottlenecks G Leclerc, A Ilyas, L Engstrom, SM Park, H Salman, A Madry | 1 | 2022 |
Bayesian Skip Net: Building on Prior Information for the Prediction and Segmentation of Stroke Lesions J Klug, G Leclerc, E Dirren, MG Preti, D Van De Ville, E Carrera Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2021 | 1 | 2021 |
Learning network size while training with ShrinkNets G Leclerc, RC Fernandez, S Madden Conference on Systems and Machine Learning, 2018 | 1 | 2018 |
Abstract P357: Deep Learning Building on Prior Ischemic Core Segmentation Improves Prediction of Infarction After Stroke J Klug, G Leclerc, E Dirren, P Maria Gulia, D Van De Ville, E Carrera Stroke 52 (Suppl_1), AP357-AP357, 2021 | | 2021 |
Revisiting Ensembles in an Adversarial Context: Improving Natural Accuracy A Saligrama, G Leclerc arXiv preprint arXiv:2002.11572, 2020 | | 2020 |
La mutation de l'appareil de défense E BERTI, F BRUNIER, S RAMOND, F ROBINE, P VIEU, L GAUTIER, ... | | |