Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space N Nüsken, L Richter Partial differential equations and applications 2, 1-48, 2021 | 71 | 2021 |
Solving high-dimensional parabolic PDEs using the tensor train format L Richter, L Sallandt, N Nüsken International Conference on Machine Learning, 8998-9009, 2021 | 38 | 2021 |
Variational characterization of free energy: theory and algorithms C Hartmann, L Richter, C Schütte, W Zhang Entropy 19 (11), 626, 2017 | 37 | 2017 |
Variational approach to rare event simulation using least-squares regression C Hartmann, O Kebiri, L Neureither, L Richter Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (6), 2019 | 28 | 2019 |
VarGrad: a low-variance gradient estimator for variational inference L Richter, A Boustati, N Nüsken, F Ruiz, OD Akyildiz Advances in Neural Information Processing Systems 33, 13481-13492, 2020 | 16 | 2020 |
Interpolating between BSDEs and PINNs: deep learning for elliptic and parabolic boundary value problems N Nüsken, L Richter arXiv preprint arXiv:2112.03749, 2021 | 13 | 2021 |
Nonasymptotic bounds for suboptimal importance sampling C Hartmann, L Richter arXiv preprint arXiv:2102.09606, 2021 | 9 | 2021 |
Early Crop Classification via Multi-Modal Satellite Data Fusion and Temporal Attention F Weilandt, R Behling, R Goncalves, A Madadi, L Richter, T Sanona, ... Remote Sensing 15 (3), 799, 2023 | 8 | 2023 |
Solving high-dimensional PDEs, approximation of path space measures and importance sampling of diffusions L Richter BTU Cottbus-Senftenberg, 2021 | 8 | 2021 |
An optimal control perspective on diffusion-based generative modeling J Berner, L Richter, K Ullrich arXiv preprint arXiv:2211.01364, 2022 | 6 | 2022 |
Error bounds for model reduction of feedback-controlled linear stochastic dynamics on Hilbert spaces S Becker, C Hartmann, M Redmann, L Richter Stochastic Processes and their Applications 149, 107-141, 2022 | 6* | 2022 |
Robust SDE-based variational formulations for solving linear PDEs via deep learning L Richter, J Berner International Conference on Machine Learning, 18649-18666, 2022 | 6 | 2022 |
Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics ER Borrell, J Quer, L Richter, C Schütte arXiv preprint arXiv:2206.06628, 2022 | 1 | 2022 |
Model order reduction for (stochastic-) delay equations with error bounds S Becker, L Richter arXiv preprint arXiv:2008.12288, 2020 | 1 | 2020 |
Transgressing the Boundaries: Towards a Rigorous Understanding of Deep Learning and Its (Non-)Robustness C Hartmann, L Richter AI-Limits and Prospects of Artificial Intelligence 4, 43, 2023 | | 2023 |
From continuous-time formulations to discretization schemes: tensor trains and robust regression for BSDEs and parabolic PDEs L Richter, L Sallandt, N Nüsken arXiv preprint arXiv:2307.15496, 2023 | | 2023 |
Improved sampling via learned diffusions L Richter, J Berner, GH Liu arXiv preprint arXiv:2307.01198, 2023 | | 2023 |
Deep learning based visual inspection of facets and p-sides for efficient quality control of diode lasers C Zink, M Ekterai, D Martin, W Clemens, A Maennel, K Mundinger, ... High-Power Diode Laser Technology XXI 12403, 94-112, 2023 | | 2023 |